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Abslmct. We investigate the influence of correlations among the valence-band elect” (VV 
correlations) and correlations between the valence-band and core electrons (CV correlations) 
in CVV Auger-electron spectroscopy (AS) and appearance-potential spectroscopy (AB). The 
AS and APS intensities are given by properly defined three-particle spech’al densities, which 
are exactly determined for the limiting cases of the completely filled and empty valence bands. 
We solve the equations of motion for the corresponding three-particle Green functions within 
the b e w o r k  of the single-band Hubbard model, which is extended to include, in addition 
to the on-site Coulomb interaction U among the valence-band electrons, the on-site Coulomb 
interadon U. between valence-band and wre electrons as well. For AES the calculation can 
be done analytically, yielding the same result as in the CiniSawatWy model except for an 
additional energetic shifi of the spectrum by 2U,. For APS the calculation has to be performed 
numerically. The role af the core-hole potential t u n s  out to be qualiotively different from 
that for AES. The APS spectrum may exhibit up to three different features, which are ascribed 
to effects of Knal-state correlations: the band-like part of the spectrum corresponds to final 
states in which both valence-band electrons are moving independently through the latrice. In the 
case of strong correlations two SateUites are additionally observed. The first one corresponds to 
two-slemon bound states that are more or less localized at the site where the transition takes 
place. It has a small width and takes almost the whole spectral weight as soon as it is split 
off. The second one has a width equal to the width of the free BIoch band and quite a small 
spectral weight. It is interpreted as belonging to final states in which one electron is localized 
in the core-hole potential while the other one is moving through the lattice. Apart from this 
nther weak satellite feaNre. the APE line shape is qualitatively well described within the Cini- 
Sawatzky model, provided that the coupling parameter U is replaced by an effective coupling 
u.n = U - ZU<. 

1. Introduction 

In recent years growing interest has been focused on the ability of Auger-electron 
spectroscopy (AES) and appearance-potential spectroscopy ( u s )  for studying the electronic 
structure of solids [ I d ] .  Since it is known that the presence of strong electron correlations 
for many systems prevents an interpretation of the AES or the APS line shape within a one- 
particle scheme [7], the discussion has been about how the effects of electron correlations 
on the spectra have to be included in the theoretical analysis. For CVV transitions most 
attempts in this direction are based on a many-body calculation of the two-particle valence- 
band spectral density, which gives the AES and the APS line shape, if only correlations 
among the valence-band electrons are taken into account [8-22]. For the general case of 
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the partially filled valence band the complexity of such many-body approaches inevitably 
implies the need for approximations in the calculation. In this context it is a remarkable 
fact that for the limiting cases of the completely filled and the empty valence band the 
calculations can be done rigorously and nevertheless yield non-trivial results. 

Based on Kanamori’s solution [23] of the two-particle problem, it was first shown by 
Cini and Sawatzky [8,9] that in the case of the completely filled band the Auger line 
shape can be derived exactly for Hubbard-type Hamiltonians. In the following the Cini- 
Sawatzky model has served as a basis for further studies that have enlarged the range 
of applicability. The limit of completely filled bands for AES has been investigated by 
Presilla and Sacchetti [14] and Kotrla and Drchal [I61 within the framework of multi-band 
Hubbard-type Hamiltonians. For the Hubbard model [17] and for a generalized multi- 
band model [20], which additionally includes direct and exchange inter-band interactions, 
rigorous results may be derived for the cases of completely filled bands (AES) and empty 
bands (APS). 

In all these attempts the resulting AES and APS line shapes are decisively influenced by 
the model parameters, yielding sharp satellite features in the case of strong correlations. 
Since for the mentioned limiting cases the results are exact within the considered model, 
AES and APS seem to be just the methods to study electron-correlation effects. Furthermore, 
the results for the limiting cases may serve as a test for model calculations in the general 
case of arbitrary band filling. 

In search of an adequate theoretical model for C W  AES and APS however, the 
correlations among the valence-band electrons (w correlations) and the calculation of their 
effects on the spectra are only one part of the problem. The strong inherent perturbation 
of the system due to the core-hole potential must not be forgotten. So in general we 
additionally have to deal with the correlations between the valence-band electrons and the 
core electrons (CV correlations). In the initial state for A E S  the primary core hole causes 
the valence-band electrons to rearrange themselves and to screen the core-hole potential 
partially. In the final state the valence-band electrons adjust to the sudden destruction of 
the core hole. For APS the valence-band electrons are scattered at the core-hole potential 
present in the final state. Surely, the inclusion of both W and CV correlations generates 
a different kind of problem, since for the additional description of the core-hole dynamics 
a three-particle spectral density has to be considered at least. Moreover, one has to bear 
in mind that the localized core hole implies a breakdown of translational symmetry in the 
distribution of the valence-band electrons. 

Most probably because of these complications, there has been only little work on the 
effects of CV correlations in AES and APS in the past. Neglecting W correlations altogether 
Natta and b y e s  [24] worked out an amatz in analogy to the problem of x-ray emission 
in metals [25,26]. For the low-hole-density case in AES and for a simplified model with 
interactions on one lattice site only, Cini [27] demonstrated that the three-particle Green 
function is merely a convolution of the two-particle valence-band Green function with the 
Green function of the core state. In a recent paper [22] the present authors proposed a 
temperature-dependent theory for AES and APS including W and CV correlations for the 
general case of arbitrary band filling. In this approach the CV correlations are treated by 
means of perturbation theory within the Matsubara formalism. 

The purpose of this paper is to generalize the rigorous treatment available for the limiting 
cases of the completely filled and empty valence band towards a formulation in terms of 
three-particle Green functions in order to study electron-correlation effects on AES and APS, 
attaching equal importance to both VV and CV correlations. 

We start from a general formulation for the AES and APS intensities as properly defined 
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three-particle spectral densities and consider a Hubbard model that has been extended to 
include the Coulomb interaction between valence-hand and core electrons on every lattice 
site (section 2) .  We proceed by solving the equation of motion for the three-particle Green 
functions in the case of AES (section 3) and APS (section 4) and summarize the results in 
section 5 .  

2. General theory 

The fundamental steps that lead to the general formulas for the AEs and the APS intensities 
have been outlined in [22]. The intensities 

- /I) = (Z~r/h*)Ap)’*(Eo - /I) f;”(Eo -/I) = ( 2 ~ / f i * ) A , “ ~ ~ ( E o  -/I) (1) 

are given in terms of three-particle spectral densities 

where i“, is the transition operator: 

T, = c/ P C? w c  b,,,. (3) 

Here c!,, denotes the crwtion operator for a valence-band electron in the Wannier state 
with spin index a at the lattice site i and bi, the annihilation operator for an electron in 
the core state with spin index U at the site i. The transition is thought to take place at 
the site i, involving a core electron with spin index uc. Let n:, = blobi, be the core- 
level occupation number. Then the three-particle spectral densities Ai3),* and A:).’ are 
defined as grand-canonical expectation values in the subspaces ‘H* and ?Lo of the full 
Hilbert space ‘R = ?L* @?Lo built up by all states with nicc = 0 and ni, = 1, respectively. 
[. . . , . . .]+ denotes the anticommutator, and the transition operators are given in the time- 
dependent Heisenberg representation. /I is the chemical potential. The outgoing Auger 
electron (incoming electron, in the case of APS) has spin index U and energy EO. For the 
case of a non-degenerate valence band considered here, the spin of the Auger electron (APS 
electron) is opposite to the spin of the core electron involved in the transition: a = -ac. 

The underlying assumptions and simplifications in this formulation for the intensities 
have been discussed in detail in [22]. Here we shall briefly enumerate the main features 
of the theoretical model. The starting point has been time-dependent perturbation theory in 
first order for the interaction that induces the transition (Fermi’s golden rule). We assume 
that the lifetime of the core hole is long compared with the typical relaxation time of the 
valence-band electrons in the presence of the core hole. So we employ a two-step model, 
which in the case of AES, for example, means that the initial excitation step can be treated 
independently from the subsequent Auger decay. Since we are interested in correlation 
effects only, the wave-vector and energy dependence of the transition mauix elements 
is neglected completely. Furthermore, we assume the contributions from an inter-atomic 
transition to be small and treat the transition exclusively as intra-atomic. We additionally 
assume that the energy of the outgoing Auger electron, or the incoming APS electron, 
is sufficiently high that there is only negligible interaction with the rest system (sudden 
approximation). 
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The three-particle spectral densities will be evaluated within the model that is 
characterized by the Hamiltonian 

ni, = cl,+;,, is the valence-band occupation number at site i and for spin a. Tij denote the 
hopping integrals, which are connected to the Bloch-band energies ~ ( k )  via 

1 
T, .  11 - - - xexp[ ik (R ,  - R j ) ] ~ ( k )  

k 

where the sum runs over all wave vectors 12 of the first Brillouin zone. cC is the one-particle 
energy pf the core level. The VV correlations are described by a Hubbard interaction 
including the on-site Coulomb interaction U among the valence-band electrons. n e  on- 
site Coulomb interaction U, between the valence-band electrons and the core electrons is 
responsible for the CV correlation effects. 

For distinctness we have chosen a model as simple as possible, considering an s-like 
non-degenerate core level and a non-degenerate valence band, but have retained the most 
important interactions that are necessary to study both W and CV correlation effects. 

3. VV and CV correlations for AES 

In equation (2) the lattice site i,, where the transition takes place, is distinguished from all 
other sites, since the grand-canonical average is resaicted to a subspace with definite core- 
level occupation number at i,. Therefore, although the Hamiltonian (4) fully reflects the 
lattice periodicity, the three-particle spectral density certainly does not. For the general case 
of the partially filled valence band this causes far-reaching complications in the calculation, 
which have lead us in [22] to another expression for the AES and APS intensities, in which 
the lattice periodicity is reestablished in a formal way, As will be shown in the following, 
however, for the limiting cases of the completely filled and empty valence band, this is not 
necessary, and we can start from equation (1) directly. 

The three-particle spectral density can be calculated from the retarded three-particle 
Green function 

(6) G(31,"'s' t t 
c j - 6  (EO) = ( (bjcocCio. Cj-so > ci< -oc ctqcbicmc)) k0 

by use of the relationship 

(7) @?(Eo) = - ( l , ' ~ ) h G ~ ~ ~ - ~ ~  (3)Jets* (Eo), 

Since G:j).z* has to be evaluated in the subspace 'H* with ntUc = 0, we immediately 
obtain the obvious result 

(8) G:31.='.* 
z,-o< (Eo) H 0 I!::(Eo) H 0 

for the case of an empty valence band (cc << /I << E @ ) )  



In this form the equation of motion is still generally valid. In the following we exploit the 
fact that bicut1q)* = 0 for any state IV)* in 1-1* and additionally make use of c!,JY)' = 0. 
Then the grand-canonical averages and the higher-order Green functions C a n  be simplified 
to a great extent: 

Now the equation of motion simply reads 

We notice that the valence-band-core interaction U, merely leads to an energetic shift 
of the Green function by 2Uc. Therefore, the equation of motion can easily be solved by 
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Fourier transformation as has been done in [I71 in analogy to the method of Sawatzky and 
Lenselink [9 ] .  We finally arrive at 

with 

Apart from the rather unimportant energetic shift about 2Uc due to the CV correlations, 
the result is exactly the same as that derived for the limiting case of the completely filled 
valence band in [17], where a two-particle valence-band spectral density has been calculated 
within the framework of the Hubbard model. Furthermore, it is fully consistent with the 
result for the considered limiting case in [22], where we have calculated the threeparticle 
spectral density in quite a different manner, employing the Matsubara formalism and first- 
order perturbation theory for the U, interaction. 

Hence, we omit a detailed discussion of the result and only state the qualitative difference 
between the effects of W and CV correlations on the Auger spectrum: while strong 
correlations among the valence-band electrons lead to the formation of two-hole bound 
states manifesting themselves as a sharp satellite feature in the spectrum, the CV correlations 
merely produce a shift of the Auger spectrum towards higher energies. Nevertheless, this 
is a remarkable result since it could not be expected a priori. 

For clarity, the correlation effects on the Auger spectrum may be classified as initial- 
state end final-state correlations. Regarding the U interaction the effect of the initial-state 
correlations is to renormalize the oneparticle Bloch energies by adding the self-energy of 
the valence-band electrons. In the case of the completely filled valence band the self-energy 
reduces to the constant value U and leads to an energetic shift of 2U in the Auger spectrum 
(cf equation (14)). The well known satellite in the Auger spectrum due to the U interaction 
is a consequence of final-state correlations (cf equation (13)). It can be interpreted as the 
two-particle density of states belonging to tightly bound pairs of holes, which propagate 
through the lattice after the transition has taken place. 

Turning now to the valence-band-core interaction U,, we surely have non-trivial initial- 
state correlations even in the case of the completely filled valence band, since because of 
the presence of the localized core hole in the initial state the valence-band density of states 
is site dependent. Because this initial-state effect obviously cannot manifest itself as a pure 
energetic shift in the Auger spectrum, we are led to the conclusion that the non-trivial 
effect of the final-state correlations almost completely cancels the non-trivial initial-state 
effect leaving the shape of the Auger line unaffected by the U; interaction. Within the 
formalism of the equation-of-motion method, however, this distinction between initial-state 
and final-state correlations is not really necessary. 

4. VV and CV correlations for APS 

4.1. Theory 

If only VV correlations were considered, we could derive the AES and APS intensities from 
a single two-particle valence-band spectral density only [17], instead of employing the two 
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different three-particle spectral densities in equation (1). Then, if the problem were solved 
exactly for AES in the limiting cases of the completely filled and empty valence bands, 
we might deduce the results for APS by means of an electron-hole transformation [28]. 
Therefore, regarding the W correlations, Auger-electron and appearance-potential spectra 
are qualitatively similar. 

Considering additionally the CV correlations, however, the mentioned symmetry 
between AES and APS no longer exists. While for AES the core hole, present in the initial 
state, gives rise to a site-dependent valence-band density of states, there is no non-hivial 
core-hole effect in the initial state for APS. On the other hand, in the final state for APS the 
valence-band electrons are scattered at the core-hole potential, whereas the core hole has 
just been filled up in the final state for ABS. These qualitative physical differences between 
the two types of spectroscopy reveal themselves in equation (I) ,  where the AES and APS 
intensities are related to different kinds of th reepahle  spectral density. So, in the absence 
of any appropriate symmetry transformation, we have to do the calculation of the preceding 
section once more for the case of APS. 

We again start with the retarded three-particle Green function 

which now has to be calculated in the subspace 'Ho of all states with n:, = 1. The 
corresponding three-particle spectral density is given by 

Af>co(Eo) = -(l/ir)In~G,O)'"''~(Eo). d - a  (16) 

Just as in section 3 we immediately obtain for the limiting case of the completely filled 
valence band 

(17) 

Turning now to the limit of the empty valence band, we again have to derive the equation 
of motion for Gi;!gl'o, which is exactly the same as equations (9) and (IO) of section 3, 
provided that all expectation values are evaluated in 'Ho instead of H*, i.e. if all superscripts 
* are replaced by O. 

The simplifications of the grand-canonical averages and the higher-order Green functions 
now read 

G!31>~1.0 
t,-oc (Eo) - 0 e : ( E O )  - 0. 

(bi.,bib.CiU~C,TU~)0 t H ai,; 

( C i ~ - ~ ~ b ~ ~ ~ C j - ~ ~ b i ~ ~ ~ ) '  t H 0 

( c j ~ - , c t ~ ~ c i ~ ~ c j - u ~ ) o  t H 0 

. ))O w U&jG!?''rel'o(Eo) ((b~c,,ccio, b j u ,  + ni -4 c ~ ~ - , , ~  c;~,,~ b,,, Eo r J - 0 ~  

U, ~ { ( b ~ u ~ c i ~ ~ c j - u ~ ( n ~ ~ ,  + n:-ctL ~ ; ~ ~ ~ ~ ~ ~ ~ , , ~ b i ~ ~ ~ ) ~ ~ ~  t H Ud4 - b C i  - &ej)Gjj-,,c ( 3 ) . * 0 ( ~ ~ )  
0' 
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and finally we are left with the following equation of motion: 

0) (EO + P + ~c - UGij - Uc(4 - &,i - GiCj))Gi,l, 

= hc$,j&,j + E(C~G$"o(Eo)  + T. zk G'3)'"*0 kj-cc (EO)). (19) 
k 

Because now both the U and U, interactions are muItiplied by Kronecker deltas in  the 
left-hand side of (19), the solving of the equation of motion is far more involved. The CV 
correlations no longer manifest themselves as pure energetic shifts of the spectrum as in the 
case of AES. 

For the following let us introduce the short-hand notation 

(20) ~ ( 3 )  = G ( ~ ) . W O ( E  
I I  i j -s  0 - P )  

and its Fourier transform G,O!,: 

After Fourier transformation of equation (19) we arrive at 

h 
N 

[EO + E ,  - 4U, - €03) - ~ ( q )  lG,o!, = - exp[ -i(p + q) . Ril 

+ f EexpL-ip.  ~ k ~ e x p [ - i q . ~ ~ ( ~ a k r  - U& - ~ ~ 6 ~ ~ , ) ~ i ; ) .  (22) 
11 

We proceed by dividing equation (22) by E o + E ~ - ~ U ~ - E ( P )  - E ( Q )  and retransfoming 
the result to the Wannier representation, ending up with 

d 3 )  ' I  =AA? + c $(u&, - C/c&i& - u&)G~) .  (23) 
kf 

Here denotes the free two-particle Green function in the Wannier representation: 

From equation (23) we deduce that the threeparticle Green function has the general 
form: 
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where theapriori unknown energy-dependent functions L q ,  pk and yk have to be determined 
by the equation of motion. Inserting the ansatz (25) into the transformed equation of motion 
(U), we obtain 

This equation is valid for arbitrary lattice sites i and j .  Considering the general 
properties A$ H 0 for IR, - &I H CO and A!; H 0 for IR, - 141 H 03 of the 
free two-particle Green function A:,!, we look at equation (26) for three different special 
sets of lattice sites i and j .  Firstly, we take i = j and IR, - RicI H CO. In this case 
A Y  H 0 and A: H 0, and the first term of the left-hand side is equal to the first term of 
the right-hand side of (26). Secondly, we take i = i, and IRj - H 03 observing the 
respective second terms to be equal in this case. Finally, for j = i, and - Ric[ H CO 

the respective third terms of (26) are equal. Assuming that the matrices (Af:)ik, (Ak;)jk 
and (Afi;)ik are non-singular, we are left with three coupled linear systems of equations: 

which due to the relationship A$ = A; can be simplified once more: 

Yk = f l k .  

The system of equations (28) together with the ansatz (25) is fully equivalent to the equation 
of motion (19), where we started from for the limiting case of the empty valence band. 
Replacing EO H EO + iO+ at'the end of the calculation in order to obtain the retarded 
three-particle Green function, we obtain the APS intensity from equations (l), (16), (Za), 
(25) and (28). 
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4.2. Results and discussion 

The following calculations have been done for a non-degenerate tight-binding valence band 
of a simple-cubic crystal: 

where the sums run over all lattice sites i of the first and all lattice sites j of the second 
shell around the site = 0. TO is the band centre of gravity, which we take as energy 
zero. For the hopping integrals TI and Tz we choose TI = 0.15 eV and T, = 0.10 eV, 
resulting in a valence-band density of states (DOS) with an approximate width of W N 3 eV, 
shown in the inset of figure 1. 

0.6 

4 :3 
< 
E 0.2 
Y 

- I t  
I 

0.0 

-1.0 0.0 1.0 2.0 

- - - -  
\ /  
d 

-4.0 -2.0 0.0 2.0 4.0 
E,+cC-4U, (eV) 

Figure 1. Free “ l e d  two-particle Green function in the Wannier represenlalion (diagonal 
element AI: and fin1 nondiagonal elements A 6  and A:$) 31i a function of energy. The inset 
shows lhe free Bloch-band DOS. 

For computational reasons we use the substitution EO H Eo + Z with a finite constant 
imaginary value for X to switch over to retarded Green functions instead of using the 
infinitesimal X = io+. This has the effect of convoluting the spectra with a Lorentzian, 
thereby smearing out sharp spectral features. All calculations have been performed with 
X = i0.15 eV. 

For the double wave-vector summation in equation (24) we have chosen 701 special 
k points in the first Brillouin zone for each sum according to the Korobov method for 
the evaluation of multiple integrals [29]. For the chosen value for this is sufficient for 
convergence. The results of the calculation of A: are shown in figure 1. The imaginary part 
of the diagonal element Ai: represents the self-convolution of the one-particle valence-band 
DOS and is proportional to the APS intensity for the case U = U, = 0, i.e. in a one-particle 
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scheme 171. The absolute values of the off-diagonal elements Ai; and A:, where i and 
j are neighbouring lattice sites, are generally much smaller than the absolute value of the 
diagonal element, which is a consequence of the tight-binding ansatz for the free Bloch 
band. Further elements, not shown in figure 1, are still smaller and need not be considered 
for the solution of (28). 

The coupled linear system of equations (28) is solved numerically by restricting the 
lattice sums to a given number of lattice sites in the first nh shells around the site i,, where 
the transition is thought to take place. For C = i 0.15 eV we have considered nsh = 11 
shells, including 171 sites. Smaller values for C would require the inclusion of still more 
shells, soon exceeding our present computational capacities. 

The results of the calculation of the APS intensity are shown in figure 2. We have taken 
the Hubbard interaction to be U = 8 eV and have varied the valenceband-core interaction 
U, from 0 eV to 11 eV. For this choice of the parameters all interesting features reveal 
themselves in the spectra 

U = 8 e V  1 

SJk ,,....., s, -E! 1 1  e V  

-15-12 -9 -6 - 3  0 3 6 9 

E0+e,-4U, (eV) 

Figure 2. Calculated APS intensities (full c w e s )  
values of the valence-band-core 

intenction UC as functions of energy The Hubbard 
intenction is fixed at U = 8 eV. Pans of the specVa 
are enhanced by a factor of I O  (dotted curves) and a 
factor of 100 (broken curves). For he meaning of he  
symbols see the text. 

The APS intensities are shown as a function of EO + - 4Uc to suppress the rather 
uninteresting constant energetic shift of the spectra about 4Uc in the picture. This shift is 
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clearly an effect of the initial-state correlations: since in the initial state for APS the core level 
is filled and since we consider the limiting case of the empty valence band, the contribution 
to the valence-band self-energy due to the U, interaction can easily be calculated yielding 
the constant value 2U,, which renormalizes the Bloch-band energies ~(k). This self-energy 
contribution explains the term 4U, in the expression for the free two-particle valence-band 
Green function A!; in equation (24). Regarding the U interaction we obviously have no 
contribution to the valence-band self-energy for an empty valence band. So in general the 
initial-state correlations are trivial for APS, and concerning the APS line shape, all features 
in the spectra thaf deviate from the self-convolution result have to be ascribed to effects of 
final-state correlations. 

Let us first consider the case U, = 0, which defines the Cini-Sawatzky model [8,9,17]. 
If additionally U = 0, the APS intensity is given by the self-convolution of the valence-band 
density of states as mentioned above. With increasing U the line shape is more and more 
distorted, and when U exceeds a certain critical value (roughly given by the width W of the 
free Bloch band), the specmm separates into a rather broad band-like part with a width of 
2 W  and a sharp satellite, which takes almost the whole spectral weight as soon as it is split 
off. This well known situation is shown in the first spectrum of figure 2 for U = 8 eV. The 
satellite (denoted by 3,’) is located about 8 eV above the band region (denoted by ‘B’). 

Now we switch on the valence-band-core interaction U,. For weak coupling (see figure 
2, U, = 1 eV) the general form of the spectrum is still quite similar to the case Uc = 0. The 
energetic distance between the satellite SI and the band-like part B, however, is reduced 
by 2U,, thereby transferring some spectral weight from SI to B. If U, is increased from 
1 eV up to 3 eV, the band-like part of the spectrum is more and more distorted, and on 
the low-energetic side of B a new satellite (denoted by 3 2 ’ )  comes into existence, The 
satellite Sz always lies below the band-like part of the spectrum and is separated from it by 
the amount Uc. The width of S2 is nearly the same as the width W of the free Bloch band. 
For 0; < U its spectral weight increases and for Uc > U decreases with increasing Uc. 

Compared with the satellite SI,  however, the spectral weight of S2 is rather small, so it 
will hardly be observed in an experiment. The energetic position of SI is U - 2Uc relative 
to the band-like part B. So if we forget about the satellite Sz for a moment and about the 
energetic shift of 4Uc due to the initial-state correlations, the situation simply resembles 
that of the Cini-Sawatzky model with an effective coupling parameter Uer = U - 2Uc, 
For Uefi = 0 (U, = 4 eV) the spectrum is almost completely characterized by the self- 
convolution of the valence-band density of states. For U, > 4 eV we have Uef < 0, and 
the satellite SI splits off from the band region on the low-energetic side. 

The interpretation of the spectra in terms of an effective coupling strength would be 
completely justified if it were allowable to neglect all off-diagonal elements of the free two- 
particle Green function A: and to keep only A$ In this case the coupled linear system of 
equations (28) can be solved analytically: 

. .  
014 =hUA$:/[i - ( U  - 2 U J A ~ ~ ~ I  

. .  
pic = yic = hU,A~:;/[l - (U - 2 U c ) A z ]  (30) 

G!? ‘rlr = hA$/[l - U,fiA%]. 

If the satellites SI and S z  come close together, however, a striking feature occurs, which 
can no longer be explained in terms of an effective interaction U e ~ f .  For U,  = U = 8 eV 
the spectrum shows a broad peak of almost symmetric shape located at 8 eV below the 
band-like part. It has the width of the satellite St and takes the whole spectral weight from 
the satellite S I .  
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For the physical interpretation of the spectra we have to remind ourselves that all features 
deviating from the self-convolution model are due to final-state correlations, apart from the 
general shift about 4U- For the limiting case considered here, the possible final states for 
APS are excited eigenstates of the Hamiltonian (4) with two electrons in the valence band 
and with all core states filled except for the core state at the site i ,  with spin index U,. We 
can easily imagine three different kinds of such a final state: 

(i) The two valence-band electrons are moving independently from each other on lattice 
sites preferably different from the site i,. Because we have taken the Coulomb interaction 
between valence-band and core electrons to be on site, the two valence-band electrons are 
not affected by the core hole at the site i, in this case. So apart from the overall energetic 
shift about 4U,, there is no effect of the valence-band-core interaction. Analogously there 
is no U interaction between these two electrons, since for most of the time they are moving 
on different lattice sites. For this quasi-free motion, each electron may occupy any state of 
the free Bloch band. So this type of final state reveals itself as a broad peak in the spectrum 
located at twice the centre of gravity of the free Bloch band Eo +E, - 4U, = ZTo (= 0 for 
our choice of the energy zero) with a width Z W ,  and can be identified with the band-like 
part B of the spectrum. 

If li) denotes the initial state for APS and I f )  any final state, we obtain the contribution 
of I f )  to the APS intensity from the absolute square of the matrix element (flTJi), where 
T, is the transition operator (3). Since we have assumed the transition to be intra-atomic, 
the two valencaband electrons are created at the site i ,  just after the transition. On the other 
hand, for the final states of the first kind the two valenceband electrons are moving through 

with the first type of final state is small, explaining the rather small spectral weight of the 
band-like part B in the spectrum for those cases, in which B is clearly separated from other 
spectral features. 

(ii) One of the two valencsband electrons is localized at the site i,, while the other 
one is moving on lattice sites preferably different from the site i,. Again the quasi-freely 
moving electron may occupy any state of the free Bloch band. The localized electron, on 
the other hand, has a rather definite energy of TO - Uc, since it is captured in the core-hole 
potential and thus cannot contribute to the dispersion of the final states. Because the two 
valence-band electrons are separated from each other for most of the time, we again have 
no effects of the Hubbard interaction U .  Transitions that leave the system in final states of 
this second kind create a satellite at the energy EO + E~ - 4Uc = 2To - U, with an energetic 
width of W .  This is precisely the satellite that we have denoted above by SZ. For situations 
in which all spectral features are well separated from each other (see figure 2, U, = 6 eV 
and U ,  = 11 eV, for example), SZ has clearly higher spectral weight than B. This has to be 
expected from the above discussion: Since for final states of the second kind there is one 
electron localized at the site i,, the overlap of the intermediate state T,li) with these final 
states is higher than the overlap with final states of the first kind. 

(iii) The two valence-band electrons are localized at the site i c .  In this case both electrons 
are affected by the core-hole potential, shifting the energy of such final states downwards 
by an amount ZUc. Since both electrons are on the same lattice site, we furthermore have to 
consider the Coulomb repulsion between them, resulting in a shift by U to higher energies. 
Therefore, if the system is left in this third kind of final state, we have for the energy EO 
of the incoming APS electron EO + E ,  - 4U, = 2To - ZU, + U .  So we identify these final 
states with the satellite that we have denoted above by SI. 

Since the two valence-band electrons are localized, the dispersion of the final states is 
weak. Consequently, the satellite SI has a much smaller width than the satellite Sz and the 

the whole lattice. Therefore, the overlap of the intermediate state T,li) = ~ ~ , ~ c ~ , ~ ~ b ~ ~ , l i )  t i  
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band-like part B, if SI is well separated from them. While for the creation of the satellite 
Sz we need a non-zero valenceband-core interaction Uc, the satellite SI is already known 
from the Cini-Sawatzky model, i.e. for Uc = 0. In [I71 it has been shown (for U, = 0) 
that SI has a small but finite width and has therefore been interpreted as a hound pair of 
electrons propagating through the lattice. Nevertheless, because the width is rather small 
compared with the width W of the free Bloch band, the two electrons preferably stay at the 
site i,. For U, f 0 it is difficult to determine the width of SI from our results, since it is 
broadened as a consequence of the finite value for E, so we can only state that the final 
states belonging to SI are localized, and are not able to obtain information about the degree 
of localization. The localization of the considered final states very obviously explains the 
high spectral weight of the satellite SI: the intermediate state T,li), for which there are two 
valence-band electrons at the site i,, has maximal overlap with the final states of the third 
kind. 

5. Concluding remarks 

One of the main advantages of AES and APS is their direct sensitivity to electron-correlation 
effects. Especially for CVV transitions there can be no doubt that for many systems electron- 
correlation effects even dominate the general form of the line shape. For this reason, and 
because of their comparatively simple experimental set-up, AES and APS appear as attractive 
methods for studying the electronic structure of solids. Since correlation effects alone 
prevent us from a simple interpretation of the measured line shape (e.g. within a self- 
convolution model), however, there is an urgent need for a general theory of AES and APS, 
from which we can extract the information on the electronic structure via comparision of 
experimental and theoretical results. 

Concerning the description of VV correlation effects, the CiniSawatzky model has 
served as a paradigm for C W  AES and, to a lesser extent, APs line-shape analysis. CV 
correlation effects, however, are not considered within this model. On the other hand, in the 
only approach that seriously deals with CV correlations in CVV Auger transitions [NI, W 
correlations are neglected altogether. Therefore, our main interest is focused on the question 
of whether it is possible to formulate a theory in which both types of correlation effect are 
treated with equal importance and which additionally allows for a future inclusion of other 
important effects due to band degeneracy and the energy and wave-vector dependence of 
the transition matrix elements. For the general case of arbitrary band filling this seems to 
be quite a difficult task, so in our recent work [221 we could treat the Ue interaction only by 
means of perturbation theory. A more general approach, which works for arbitrary strengths 
of both the U and U, interactions, will be presented in a forthcoming paper. 

In our present work we have tackled the problem, restricting ourselves to the limiting 
cases of the fully occupied and the empty valence band. These cases are of special 
importance, since they can be treated exactly. The AES and APs intensities are given by 
properly defined three-particle spectral densities, which are determined solving the equations 
of motion for the corresponding three-particle Green functions within a simple model of a 
non-degenerate valence band and a non-degenerate core level. 

For AES and for the limiting case of the completely filled valence band, the calculation 
is performed analytically. The result for the Auger spectrum is exactly the same as in the 
Cini-Sawatzky model, apart from a rather unimportant shift of the whole spectrum about 
2Uc towards higher energies. For AES in the limit of the fully occupied valence band, this 
shift is the only effect that is due to the valence-band-core interaction U,. This result may 
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be interpreted in terms of initial-state and final-state correlations. The electron correlations 
due to U,, in both the initial state and the final state for AES, are non-trivial. However, they 
almost completely cancel each other leaving the shape of the Auger line unaffected by the 
Uc interaction. 

For APS the calculation has to be performed numerically. In the case of the empty 
valence band the APS spectra may exhibit up to three different features. These have to be 
ascribed exclusively to final-state correlation effects, since now both the W and the CV 
correlations are trivial for the initial state for APS, yielding a constant energetic shift of the 
spectrum about 4Uc towards higher energies only. The band-like part B of the spectrum, 
which is located at EO = 2To - cc + 4Uc and which has a width of ZW, where W is the 
width of the free Bloch band, corresponds to final states in which both electrons are moving 
independently through the lattice. Furthermore, the spectrum exhibits a satellite SI located 
at an amount U, below the band-like part. It has the width of the free Bloch band and 
belongs to final states in which one electron is captured in the core-hole potential, while the 
other one propagates through the lattice. Finally, the strong satellite SI lies at an energy 
U - 2Uc relative to B and has a rather small width. It is interpreted as reflecting final 
states in  which both valence-band electrons are more or less localized at the site where the 
transition has taken place. 

If the coupling parameters U and U, are chosen in such a way that all three spectral 
features are well separated from each other, the satellite S I  takes almost the whole spectral 
weight. The spectral weight of Sz is only small, so it will be hardly observed in an 
experiment, but is still higher than the spectral weight of the band-like part. 

Apart from the satellite feature Sz and apart from the overall energetic shift about 4U, 
due to the initial-state correlations, we have the same situation as in the CiniSawatzky 
model, provided that the coupling parameter U is replaced by an effective coupling 
Uea = U - We. This surely has to be taken into account if one tries to determine the 
value for U from the energetic difference between the positions of the band region and the 
satellite. 

~. ~~ 
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